
NuID: A Model for Trustless,

Decentralized Authentication and

Self-Sovereign Identity

info@nuid.io

2

Table of Contents

1. Introduction and Motivation 3
1.0 What is NuID? 3
1.1 What Problems Does NuID Solve? 4

1.1.1 Eliminate the Risk of Mass Credential Breaches 5
1.1.2 Remove Credentials and Identities from Service Provider Silos 6
1.1.3 Abstract Digital Identity From the Device 7

1.2 How Can NuID be Used? 9

2. How NuID Works 12
2.0 Architecture Overview 12
2.1 Authentication Protocol 13

2.1.1 Zero Knowledge Authentication in the Abstract 13
2.1.2 Zero Knowledge Authentication at NuID 13
2.1.3 Self-describing Protocols: Interoperability and Extensibility 15

2.2 Distributed Ledger Storage Layer 16
2.3 Open-source Client Libraries 17
2.4 NuID API and Service Infrastructure 18

2.4.1 Integrations 18
2.4.2 Credential Loss and Revocation 19

2.5 Web Services and Applications 20

3. Implementing NuID 20
3.0 Who Stands to Benefit? 20
3.1 Implementing NuID into Your Service 22

3

1. Introduction and Motivation

1.0 What is NuID?

NuID is a trustless and decentralized authentication service that facilitates participation

in a decentralized identity model. The service uses zero knowledge proofs (ZKPs) and distributed

ledger technology (DLT) to enable applications and web services to authenticate users without

ever having to see, store, or therefore be liable for securing users’ authentication data, thereby

eliminating the risk of mass credential breaches. Users effectively own their own credentials and

can prove ownership of them without ever having to entrust them to another party, including

NuID. In addition to strengthening traditional authentication flows and reducing service

vulnerabilities, NuID unlocks a wide range of new approaches for single sign-on (SSO) and self-

sovereign identity (SSI). The decentralized nature of the architecture eliminates traditional siloed

databases of credentials, creating an inherently portable and user-owned identity platform on

which users can secure and choose to share other forms of data as well.

On the front-end, NuID looks like any other login experience. Just like the traditional

“shared secret” model, NuID takes standard username and password credentials as inputs and, if

authenticated, provides the user access to the desired privileged resources. It is when the user

pushes ‘login’ that NuID departs from traditional authentication approaches. The NuID service

uses lightweight client libraries to convert the user credentials into public ZKP parameters. These

public parameters are sent via POST request to NuID’s API and are then appended to the

Ethereum distributed ledger by NuID. During authentication, the API pulls the user’s public ZKP

parameters and executes the ZKP protocol with the client device. Finally, the NuID API returns

either a success or failure response to the service, indicating if the user has provided the correct

credential (a more detailed description of the protocol is provided in Section 2). It is important to

note that during NuID’s authentication flow, user credentials are never stored or even transmitted

from the user’s device. The information that is stored on the distributed ledger can be publicly

viewed, similar to a public key in traditional public key infrastructure (PKI). Furthermore, the

4

NuID service does not rely on any aspect inherent to the device (e.g. device ID), and therefore is

also portable between devices (not just services). In this way, NuID sets the basis for a truly

abstracted identity layer, pulling user authentication out of both the device and web service silos.

Flexibility is central to NuID’s architecture. Beyond the flexibilities inherent to the

decentralized authentication approach (device, service), NuID is designed to be maximally flexible

with respect to both credential types and storage. The core authentication engine is interoperable

with any reproducible authentication secret (password, PIN, private key, software or hardware

token, etc., each optionally protected under device-local biometrics). On the other side, the storage

mechanism is also flexible, with the NuID service fully agnostic to the storage approach (public

ledger, private ledger, local database, etc.). The NuID service is also interoperable and

complementary to authentication and identity standards such as OpenID Connect (OIDC),

OAuth, Decentralized Identifiers (DID), and SAML.

NuID is currently deployed in production environments and has been cryptographically

verified by Professor Jonathan Katz et al. at George Mason University.1 More technical detail on

how NuID works and how you can integrate it into your web service or identity model is provided

in Section 2 and Section 3.

1.1 What Problems Does NuID Solve?

At NuID, we believe that the future of the internet belongs to the user, and the NuID

decentralized identity architecture was designed to support that future. The current state of

authentication and digital identity fundamentally limit the ability of users to control their own

identity and manage their own risk. NuID strives to set the foundation for an alternative identity

architecture which releases web services from these limitations and creates a framework to return

control of data and identity to the user.

1 Security Analysis of the NuID Decentralized Identification Protocol

https://nuid.io/pdf/katz-security-analysis.pdf

5

1.1.1 Eliminate the Risk of Mass Credential Breaches

By far the most common authentication approach in production today involves the use of

“shared secrets” between the user (client) and the application (server). In this model, the client

sends the user’s plaintext password to the server, where it is stored for future comparison. In

practice there are many ways to strengthen this process—for example, using encrypted channels

like SSL, salting and hashing passwords at the server before storing, employing two-factor

authentication, etc. While useful, these are ultimately bandages to an inherently flawed process.

By sharing a secret, the user loses control. He or she must trust the service to safely manage and

store his or her credentials. As has been demonstrated time and again, this trust is not well-

founded, as holding user secrets in a centralized fashion is inherently risky. Breaches and the mass

compromise of user credentials have become commonplace in recent years.2 This is not a risk

reserved for the techno-illiterate, as most of the technological leaders have also encountered major

incidents of credential breaches in the recent past.3

These breaches are bad for users and businesses alike. Businesses are often encumbered

with large fines4 and the loss of trust from their customer base.5 Users face ongoing risk as their

personally identifiable information (PII) is exposed to the public. Not only can hackers and

criminals conduct fraudulent activity at the breached company, they can use this information to

establish new vectors of attack into completely unrelated services.

This exposes the critical issue: in the shared secret model users are forced to trust services

which are inherently vulnerable, and they do so at great personal risk. NuID solves the source of

this problem by eliminating the need to share any secrets whatsoever, and therefore put an end

to the requirement of trust (hence “trustless”). The decentralized storage of public parameters

plays an important role in this objective by protecting the integrity and access of the public

parameters without the reliance on any one source.

2 ITRC 2019 End of Year Data Breach Report
3 LinkedIn, Facebook, Google, Twitter
4 IBM Cost of a Data Breach Report
5 Ping Identity 2019 Consumer Survey

https://fortune.com/2016/05/18/linkedin-data-breach-email-password/
https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/
https://www.wired.com/story/google-stored-gsuite-passwords-plaintext/
https://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext/
https://www.idtheftcenter.org/wp-content/uploads/2020/01/01.28.2020_ITRC_2019-End-of-Year-Data-Breach-Report_FINAL_Highres-Appendix.pdf
https://www.ibm.com/security/digital-assets/cost-data-breach-report/#/
https://www.pingidentity.com/en/company/press-releases-folder/2019/consumers-stop-engaging-brand-data-breach.html

6

1.1.2 Remove Credentials and Identities from Service Provider Silos

The web as it exists today is riddled with identity silos. Every time a user signs up for a

web service he or she instantiates a duplicative copy of his or her identity. At a minimum, this

identity consists of a username (or email), password, and the user’s activity on the relevant web

service. Depending on the type of service, this identity may also include a range of additional

personal information. At the moment the user registers, this information is transferred to the

servers of the service provider, where it is stored under their full control. This single central store

presents security risks, the prevailing of which have already been mentioned. However, the user’s

digital existence is not confined to a single central service, but instead quite the opposite. The

average individual’s digital life typically consists of a wide range of online services. Over time, this

leads to the existence of numerous, parallel identities across the user’s many web services. This

identity fragmentation adds significant points of user experience friction, such as the necessity to

remember multiple unique passwords or the difficulty of ensuring that changes in personal

information are propagated to every service.

Figure 1: A decentralized identity removes the need for service-specific siloes.

Federated identity solutions have been introduced in an effort to help consolidate this

fragmented user experience. While effective at this objective in some cases, these services,

unfortunately, come at the cost of even further centralization of control and perpetuate the

requirement of trust. The third-party identity provider, typically a large social media service,

7

becomes a single point of authority (and failure) for users’ identities across many services. The

user has some control over how his or her information is shared, but the power and data still sit

in the walled garden of the federated identity provider. In this way, the federated identity

providers help to compress the silos, but persist the shared secret, trust-based model. This trust

has been increasingly strained as of late as users have become more aware of the breadth of

activities conducted with their information by these social media providers behind the scenes.6

The distributed nature of NuID helps to eliminate these silos and create a single source of

truth for user identity. With public ZKP parameters stored on a public ledger, NuID credentials

are accessible to anyone, and therefore exist outside of the traditional web service silos. Critically,

in this architecture the user becomes the central administrator of his or her credentials, keeping

all secrets locally on his or her devices—or in their mind—and holding the sole power to amend

the central source of truth. NuID’s role in this interchange is that of the blind facilitator. NuID

never sees or holds the user secret and does not maintain any privileged access to the storage

location. Furthermore, every interaction the NuID service facilitates—credential registration,

storage, and verification—can be publicly validated against the backing ledger network. It is

critical to the decentralization of the architecture that an organization may eject the NuID

dependency from their technology stack with uninterrupted support for new and previously

registered identities.

1.1.3 Abstract Digital Identity From the Device

The existence and proliferation of service silos has been a feature of the internet since its

inception. A newer phenomenon, coinciding with the proliferation of mobile smart devices, is the

increasing importance of a user’s device in establishing his or her digital identity. In many

instances, the device parameters have become essential to the function of public key infrastructure

(PKI). Protocols such as leading cryptocurrencies, passwordless authentication (e.g., WebAuthn

approaches), and cellular network authentication are founded on either native device IDs or

private keys stored on a device. By using the device as a proxy for user identity these services

6 2018 Edelman Trust Barometer Global Report

https://www.edelman.com/sites/g/files/aatuss191/files/2018-10/2018_Edelman_Trust_Barometer_Global_Report_FEB.pdf

8

have introduced a rigidity in the authentication process and potentially excluded users or

applications without the necessary device access.

Unlike these solely device-based identity approaches, the zero knowledge protocol

leveraged by NuID can be used to authenticate any repeatedly producible secret value. This

flexibility allows NuID to support both “something you know” (e.g. passwords) and “something

you have” (e.g. device-based private keys) authentication factors. As with other device-based

authentication technologies, a private key used as a NuID factor can be additionally protected by

device-local biometrics, or “something you are.” The result is a digital identity that is authenticated

by a composable set of credentials stored either in the user’s mind, on their devices, or both,

depending on the needs and constraints of the authentication context. Figure 2 illustrates the

flexible and independent nature of the NuID protocol, and how NuID can help to set the

foundation for a portable, persistent, and user-controlled digital identity layer.

Figure 2: NuID introduces a distinct and independent layer for authentication.

9

1.2 How Can NuID be Used?

There are essentially two broad use-cases for the NuID protocol and service. The first of

which is a traditional authentication use-case. In this application NuID essentially replaces a

service’s traditional authentication flow. The benefits of this have been enumerated already, but

essentially distill down to reduced enterprise risk, increased credential portability, and control of

credentials returned to the user. By not being responsible for holding and protecting user

credentials, services can materially decrease their risk exposure. Users benefit as they do not need

to trust any third parties, gaining full control of their own credentials. Further, as credential silos

are eliminated, the risks associated with breaches of these silos are mitigated. Businesses can

leverage NuID to accomplish this simply by incorporating the relevant client libraries into their

service and connecting them to the NuID REST API (API access is available at

https://portal.nuid.io). It is worth noting that NuID is currently operating in this capacity in

enterprise production environments.

 The second, and most impactful, use-case for NuID is as a foundation to self-sovereign

digital identity models. Authentication is a fundamental component of any digital identity model,

serving as the critical link between individuals and their digital identities. Figure 3 below shows

the general components of digital identity, and the important role played by authentication.

Figure 3: Authentication links the user to the digital world.

10

As previously mentioned, existing authentication protocols either silo the user identity

inside a specific service, device, or both. These limitations to the current authentication protocols

fundamentally limit the ability of self-sovereign identity to reach its idealistic potential. For a user

to control their identity they must not rely on any 3rd party gatekeeper, and they should be able

to access the resources they require in any situation. Only with a decentralized authentication

architecture like the one described herein can the user truly serve as the gatekeeper to their own

digital identity.

By lifting the user’s credentials into this distinct and independent layer, the NuID protocol

unlocks a host of potential identity applications. At the most basic level, this creates the potential

for a single sign on (SSO) service which does not require a central trusted entity to hold these

critical credentials. Beyond basic login applications, a decentralized authentication protocol sets

the stage for full-fledged decentralized identity models, which in turn can enable applications

previously not possible. Developers and service providers will eventually be able to use NuID as

an anchor to secure, store, and access relevant user attributes. These attributes will be stored in

distributed or centralized databases, and only be accessed by a decentralized authentication

process. This end-to-end approach describes an identity model in which attributes are secured by

one’s credentials and access to them is in the exclusive control of the user. Attributes are of course

a general term referring to any potential information about an individual. The generality of such

a solution creates a wide range of potential applications—including a basic data locker with

verifiable attributes (e.g., age, state of residence, etc.), financial institution “know-your-customer”

(KYC) verification information, portable electronic medical records (EMR), digital asset

ownership, and many more. The generalized applicability of such a model is the motivation behind

its development and the motivation behind this paper.

The NuID solution was developed with the objective of supporting self-sovereign identity,

and it is therefore fully complementary and interoperable with key protocols and standards such

as OpenID Connect (OIDC), OAuth, SAML, and Decentralized Identifiers (DIDs). These

protocols do not set requirements on how the user is authenticated, but rather provide frameworks

11

for authorizing and exchanging information between disparate web services after the user has

already been authenticated by one of the services. For example, OIDC requires user authentication

prior to issuing an identity assertion to a relying party, and it does not specify a particular

authentication mechanism. Therefore, an OIDC provider could use decentralized authentication

as presented herein to perform user authentication prior to issuing an OIDC identity assertion.

Doing so would eliminate the need for such an OIDC provider to maintain and protect a password

storage back-end, which is typically the case for current OIDC user authentication. While OIDC

is used as a specific example, this same complementary relationship applies to all of the

aforementioned protocols.

12

2. How NuID Works

2.0 Architecture Overview

The NuID service consists of four main components: (1) a zero knowledge proof (ZKP)

authentication protocol, (2) a distributed ledger storage layer, (3) open-source client libraries, and

(4) the NuID API and service infrastructure. Collectively these four components enable the

trustless authentication and decentralized identity model described herein.

Figure 4: NuID registration and authentication flow.

Registration Authentication

1. User inputs a username/email and a
new secret (e.g. a password), and the
NuID client libraries generate ZKP
parameters from the secret.

2. Username and ZKP parameters are
sent to your back-end; parameters
are forwarded to the NuID API.

3. ZKP parameters posted to the
ledger.

4. NuID API returns a unique,
persistent identifier for the new
credential.

5. Username is associated with the
persistent identifier; registration is
complete.

6. User inputs their username and secret and clicks

‘Login’; username is sent to your back-end.

7. Your back-end sends the associated identifier for
that username to the NuID API to request a
cryptographic challenge.

8. NuID API retrieves the ZKP parameters from the
ledger.

9. NuID API returns a unique, one-time
cryptographic challenge derived from the user’s
ZKP parameters, which is forwarded to the client.

10. NuID client libraries use the secret and the
challenge to generate a one-time ZKP of the secret.

11. ZKP is forwarded to the NuID API for verification.

12. NuID API returns the outcome of the verification
(success/failure) to your back-end.

13

2.1 Authentication Protocol

2.1.1 Zero Knowledge Authentication in the Abstract

In general, a zero knowledge proof allows one party to prove they know a secret value to

another party without revealing anything about the secret itself. This property of ZKPs creates

the knowledge asymmetry necessary in constructing a trustless authentication service.

Mechanically similar to PKI, knowledge asymmetry is what allows non-sensitive authentication

parameters to be posted publicly, against which any verifier (e.g. any authenticating service, or

provider such as NuID) may validate that the correct underlying authentication secret has been

produced by the user or client agent without learning anything else about the secret or its nature.

Because the verifier learns nothing of the underlying secret, that secret may take any form,

allowing the user to choose any deterministic authentication secret to authenticate their identity.

A password, PIN, private key, software or hardware token, etc., are all indistinguishable to the

verifying party in a zero knowledge authentication protocol. On devices that support biometrics,

a client application may require device-local biometric authentication prior to releasing a securely

stored deterministic value as input to the proof generation algorithm.

2.1.2 Zero Knowledge Authentication at NuID

NuID’s zero knowledge proof authentication protocol is based on the Schnorr identification

scheme7 and has been subject to rigorous third-party cryptographic evaluation.8 It is worth noting

that Schnorr’s identification scheme relies on the discrete log (DLOG) assumption and is therefore

not quantum-safe. Section 2.1.3 illustrates why NuID’s authentication service is not operationally

bound to a single instance of a zero knowledge protocol, detailing the system’s extensibility to

support multiple zero knowledge authentication protocols side-by-side, including future quantum-

safe approaches.

7 Schnorr scheme: https://tools.ietf.org/html/rfc8235. NuID’s protocol differs slightly from the Schnorr

identification scheme, which does not use any nonce.
8 Security Analysis of the NuID Decentralized Identification Protocol.

https://nuid.io/pdf/katz-security-analysis.pdf

14

NuID’s ZKP protocol consists of the algorithms KeyGen, P (proof generation), and V

(proof verification), and uses a cyclic group G of prime order q with generator g, as defined in the

secp256k1 elliptic curve specification.9 In the notation below, H is a cryptographic hash function;

NuID currently uses scrypt.10

The protocol steps for registration and authentication are detailed below. “Registration” is

when a new secret is created and associated with a user, and “authentication” is any subsequent

verification of that secret when a user attempts to login. We omit here the mapping of usernames

to the storage location of public credentials to more clearly understand how the ZKP

authentication process works.

Registration

1. The user generates a secret and enters it into the client.11

ilovemydog! = secret

2. The client uses secret as the input to the KeyGen algorithm and outputs the

value Pub.

KeyGen (secret) computes x = H(secret) and outputs Pub = gx

3. The client sends Pub along with credential metadata (see Section 2.1.3

below) to the service back-end, which forwards them to the NuID API.12

4. The NuID API appends Pub and the credential metadata to the Ethereum
ledger.

9 https://www.secg.org/sec2-v2.pdf
10 https://tools.ietf.org/html/rfc7914
11 Currently, NuID’s client libraries only support a user-generated password as the secret; however, future

versions will allow a device-based software token to be registered as the secret, in addition to other
authentication factors.

12 Pub and the credential metadata are collectively referred to as “ZKP parameters” in Figure 4.

15

Authentication

1. The user inputs the same secret into the client.

ilovemydog! = secret .

2. The client uses Pub, secret, and a nonce nonce as inputs to the proof

generation algorithm P and outputs the proof (c, s). The nonce is issued by
the NuID API and is unique to each authentication attempt.13

P first computes x = H(secret)
P then chooses uniform r ← ℤq and sets A = gr

P then computes c = H(Pub, nonce, A) and s = c · x + r mod q

3. The client sends the proof (c, s) to the service back-end which forwards it to
the NuID API.

4. The NuID API uses Pub, nonce, and π, where π = (c, s), as inputs to the
proof verification algorithm V and outputs TRUE or FALSE.

V first computes A = gs/Pubc .
V returns TRUE if and only if H(Pub, nonce, A) = c

To see that the scheme is correct, note that in an honest execution we have:

gs/Pubc = gc·x+r/gc·x = gr = A

and so H(Pub, nonce, A) = c as required.

2.1.3 Self-describing Protocols: Interoperability and Extensibility

In the decentralized authentication architecture presented here, the non-sensitive

authentication parameters posted publicly to the ledger are self-describing. That is, the parameters

encode how the parameters themselves were produced. This implies that any authenticating

service or decentralized authentication provider may efficiently dispatch the verification of a proof

to the appropriate verification algorithm.

13 The nonce is part of the “cryptographic challenge” referenced in Figure 4.

16

Concretely, this means that authentication credential metadata such as the zero knowledge

protocol; elliptic curve; cryptographic hash function, H; and the key generation algorithm,

KeyGen; are themselves embedded as public parameters on the ledger, alongside the user’s public

authentication parameters (Pub), so that any service may identify the appropriate verification

algorithm for a given credential. The benefit of publishing authentication credential metadata

publicly is two-fold. First, it allows any participating service to independently verify the shared

body of authentication credentials (i.e. the authentication parameters posted to the ledger)

without mutual trust. This implies that each participating service may be an independent verifier

within the ecosystem should it choose to be, while maintaining interoperability with other verifiers

without additional coordination. This allows providers such as NuID to be interchanged with

uninterrupted support for all new and existing identities. It also implies that users may share a

single persistent identity across participating services should they choose to. This has significant

identity management implications that are out of scope of this overview.

Second, publishing the parameter metadata publicly allows authentication data produced

by different zero knowledge protocols to be verified side-by-side, because the data itself contains

the information necessary to programmatically identify the appropriate verification algorithm and

dispatch accordingly. This implies that the system is extensible in what cryptographic primitives

and protocols it supports.

2.2 Distributed Ledger Storage Layer

A distributed and decentralized storage mechanism allows authentication credentials to be

independently verified by every participant without mutual trust between participants. This

universal availability and lack of centralized control is crucial to achieving the decentralized

identity benefits described in Sections 1.1 and 1.2. It also reduces the total amount of data any

individual service operator must store and protect in order to authenticate users.

NuID uses the Ethereum ledger as a storage layer for authentication credentials. Ethereum

was chosen due to its stability, robust decentralization, and maturity of developer tools and

resources. However, other layers in the architecture don’t depend on a specific credential storage

17

implementation. Alternative storage layers, including both DLT and non-DLT options, may be

supported by NuID in the future. It is worth noting that the storage layer determines the scope

in which registered credentials are recognized: any party with read-access to the storage layer may

independently verify the authentication data registered there, and therefore authenticate

registered identities.

2.3 Open-source Client Libraries

As described in Figure 4, the NuID client libraries are used at the service front-end for

zero knowledge proof generation. These libraries were designed to be lightweight and optimized

for resource-constrained environments like the browser. Currently, the NuID client libraries are

available in JavaScript. We plan to port these libraries to other native mobile and cross-platform

ecosystems in the near future. Up-to-date information on available libraries can be found on the

NuID GitHub page (https://github.com/NuID) and in the NuID Developer Portal

(https://portal.nuid.io).

The NuID libraries for proof verification and challenge generation are also available with

open-source licensing. These libraries serve as reference implementations, promote adoption, and

support providers of the architecture. However, developers can greatly simplify their

implementation of NuID by offloading these steps to the NuID API, as illustrated in Figure 4.

NuID’s highly-available and misuse-resistant API can be utilized for storing credentials on the

Ethereum ledger, generating cryptographic challenges, and verifying ZKPs generated by the client.

NuID’s own open-source libraries wrap well-recognized open-source dependencies, which

are routinely reviewed by the broader cybersecurity and developer communities for correctness—

an intrinsic benefit of the open-source model.

18

2.4 NuID API and Service Infrastructure

NuID exposes a cost-effective elastic endpoint REST API for credential registration and

authentication. The NuID API allows developers and service operators to offload secure

authentication as they would with traditional managed authentication services, and to participate

in a decentralized authentication ecosystem without operating a node on the backing ledger

network. There are currently two root endpoints in NuID’s API:

• /credential — The credential endpoints allow developers to create and retrieve

credentials and supports associating additional metadata to public identities.

• /challenge — The challenge endpoints allow developers to create single-use,

time-bound challenges, as well as verify proofs generated against previously

created challenges. JWTs are currently supported, and alternative bearer

tokens and assets are on the immediate development roadmap.

NuID’s open-source client libraries and example deployments automate all common

interactions with the above service endpoints. There are a number of other developer convenience

features relevant to the service API and supporting open-source libraries which are beyond the

scope of this overview, but available to read and use on NuID’s Developer Portal

(https://portal.nuid.io).

2.4.1 Integrations

Many web-based technologies contain a plugin or module system which allows them to be

configured and extended, especially for common interactions like user authentication and

management.

NuID-supported integrations with popular web technologies aim to provide native modules

to reduce developer friction and promote adoption of a decentralized authentication architecture.

Popular frameworks in supported languages will be targeted for future development, including

19

Express (Node.js), Passport (Node.js), Rails (Ruby), Ring (Clojure), Macchiato (ClojureScript),

Spark (Java), Spring (Java), Struts (Java), Django (Python), and Laravel (PHP). Extensible web

content management systems such as WordPress are also on the development roadmap as an

additional integration layer.

2.4.2 Credential Loss and Revocation

Once an authentication credential has been registered to a distributed, append-only public

ledger, there is no way to delete or revoke it. This is a strength of the architecture in that registered

identities cannot be centrally censored. The immutability of credentials also has implications on

how users recover their application data at a given service in the case of credential loss or

compromise. It also impacts how services might deny rights to certain identities within the policy

terms and network boundaries of their service.

• Loss and Compromise — Restoring a lost or compromised authentication

credential reduces to a user simply registering a new credential and following

any out-of-band verification required by a service to reassociate their existing

application data to the new authentication credential. This can take the form

of a traditional email-based recovery, call center verification, or any other out-

of-band process, including decentralized approaches aimed at savvy users. The

old authentication credential remains in the ledger’s history and becomes

obsolete.

• Revocation — A service may deny rights to a given identity as defined by

their terms of service within the bounds of their network by adding an

authentication credential’s identifier to a blacklist. This is similar to how such

a process might work today, but crucially such decisions do not leak beyond

the individual service’s network and auxiliary systems, which becomes

20

important in an ecosystem where persistent identities may be shared across

many services with heterogeneous policies.

Put simply, these two processes can be made to look identical to the processes users are

accustomed to, with minor mechanical differences “under the hood.”

2.5 Web Services and Applications

The outermost and most interesting layer in a decentralized identity architecture is the

services and applications that participate in it. At this layer, authentication internals are securely

abstracted, and developers are able to focus on defining and implementing interactions specific to

their platform that are more meaningful and important to users. While there are no required

changes in user-experience or management patterns from the perspective of the end-user, they are

able to more granularly define and manage how they are authenticated at each service, optionally

sharing—not replicating—a persistent identity across services. The identity management

implications of such an architecture are broad and are well-documented in resources relating to

self-sovereign digital identity.

3. Implementing NuID

3.0 Who Stands to Benefit?

Ultimately, every participant in a decentralized authentication architecture—service

providers, users, and developers—benefits from the resilience and availability intrinsic to

decentralized systems. These systems eliminate the reliance on the continuity and benevolence of

a third party to appropriately uphold identities, which reduces risk for service providers and users

alike.

21

• Services — A decentralized authentication architecture provides digital service

operators similar security, liability, operational, and economic benefits of any

modern managed authentication and identity solution. As a decentralized

technology upheld by open-source libraries, there is no concept of vendor lock-in.

The architecture synergizes with existing and emerging identity standards such as

OIDC and DIDs and is flexible to meet credential type and storage requirements.

• Users — For users, a decentralized authentication architecture provides the

security of standards-based implementation, the flexibility to select any

reproducible authentication gesture (password, PIN, private key, software or

hardware token, etc., each optionally protected under device-local biometrics), and

the pseudonymity and cross-service portability of self-sovereign identity. The

architecture makes no assumption regarding the availability of a per-user

smartphone or personal device, and therefore extends to resource-constrained

contexts and applications. The model synergizes with the existing ecosystem of

password managers, authenticator applications, and other digital identity

protection and management tools.

• Developers — As participants in a decentralized authentication model, developers

do not need to implement password storage to achieve secure authentication in

their application. Application servers in a decentralized authentication architecture

only ever handle public and non-sensitive authentication data, removing password

storage and caching, request logging, and passive server compromise as vectors for

credential leakage. Using open-source libraries and plugins, adoption is identical to

language-native authentication frameworks, without the need to provide and

protect a password storage back-end, and without outsourcing the same process to

an OpenID Connect provider. The model is akin to traditional PKI, where users

issue their own credentials, and identities are pseudonymous by default.

22

3.1 Implementing NuID into Your Service

Whether you intend to use NuID as an authentication solution for a greenfield project, to

replace your existing authentication solution in a mature web service, or integrate it as a

component in a broader identity model, the NuID team is available as a resource to support you

in your implementation. NuID’s level of support will scale to a customer’s specific requirements—

ranging from full managed implementation to full customer self-service. NuID maintains a self-

service developer portal which contains the necessary documentation, API key, reference code,

and client libraries to deploy NuID into a development or full production environment. This self-

service portal can be accessed at https://portal.nuid.io. You can also find NuID on GitHub and

npm. Regardless of your requirements, please feel free to contact us at info@nuid.io or join our

slack channel with any questions or comments you may have.

https://join.slack.com/t/nuid-community/shared_invite/zt-f73jttn7-NOxW9AG5M1ahjOtNS2nWjg

