
Security Analysis of the NuID

Decentralized Identification Protocol

Jonathan Katz

1 Background

We provide an analysis of a decentralized identification protocol used by NuID. Relevant background
is provided here, but we refer to the document describing the protocol for further details and
discussion.1

1.1 Requirements and Definitions

Recall that an identification protocol consists of algorithms (KeyGen,P,V) as follows:2

� The key-generation algorithm KeyGen takes as input a user’s secret information sk and outputs
a corresponding public value pk.

� The proof-generation algorithm P takes as input the secret information sk and a challenge
(or “nonce”) nonce, and outputs a proof π.

� The proof-verification algorithm V takes as input public information pk, a nonce nonce, and
a proof π, and outputs either 0 or 1 (indicating rejection or acceptance, respectively).

(There may also be public parameters, left implicit in the above, that can be used by any of
the algorithms.) It is required that for all secrets sk, all public values pk output by KeyGen(sk),
any nonce nonce, and any proof π output by P(sk, nonce) it holds that V(pk, nonce, π) = 1.

An identification protocol as above would be used in the following way:

1. A user runs KeyGen(sk) using their secret information sk in order to generate the public
value pk. The user then appends pk to a ledger and receives a unique, persistent identifier ID
derived from the ledger transaction.

2. When the user wishes to identify itself to some service, the user and service carry out the
following steps:

(a) The user sends their claimed identity ID to the service.

(b) The service searches the ledger for the appropriate transaction (ID, pk). It then generates
a nonce nonce and sends it to the user.

(c) The user computes π ← P(sk, nonce) and sends π to the service.

(d) The service accepts the user’s claimed identity ID iff V(pk, nonce, π) = 1.
1NuID: A Model for Trustless, Decentralized Authentication and Self-Sovereign Identity. 2020.

https://nuid.io/pdf/white-paper.pdf.
2Notation has been changed from the NuID White Paper, and the interfaces to the algorithms have been simplified.

1



1.2 Threat Model

The goal of the protocol is to prevent an attacker from being able to impersonate an honest user.
We consider an attacker who may do any and all of the following:

� Observe public transactions posted to the ledger.

� Impersonate a service to a user.

� Eavesdrop on executions of the identification protocol between a user and a service. (In fact,
it is easy to see that eavesdropping is subsumed by being able to impersonate a service to a
user, as long as the mechanism by which a service generates a nonce is public.)

� Attempt to impersonate a user to a service.

Informally speaking, we require that even after doing the above it should remain infeasible for an
attacker to falsely impersonate an honest user. We formalize this via a definition that gives the
attacker access to various oracles modeling its ability to carry out the above attacks.

Definition 1 Fix some identification protocol Π = (KeyGen,P,V) and consider the following
experiment involving Π and an attacker A:

1. A secret value sk is chosen from some distribution D.

2. Compute pk← KeyGen(sk) and give pk to A.

3. A may repeatedly query a proof oracle P(sk, ·) that allows it to specify an arbitrary nonce
nonce and receive in return a proof computed using sk and nonce.

4. At some point, A requests a challenge nonce. In response, a nonce nonce∗ is generated and
given to A, who in turn outputs a proof π.

A succeeds if V(pk, nonce∗, π) = 1. Let Adv1
Π,D(A) denote the probability that A succeeds.

For a given identification protocol we would like to bound the probability with which an at-
tacker A running for some specified amount of time succeeds. Note, however, that this is not
possible unless two additional elements are specified: (1) the probability distribution D from which
sk is chosen (if it is easy for the attacker to predict sk, then the attacker can trivially generate a
valid proof π); and (2) how nonce∗ is generated (if it is generated in a predictable way, then the
attacker can succeed by querying nonce∗ to its proof oracle in step 3 of the attack). We will address
the first point explicitly in our later analysis. Regarding the second point, we assume that services
generate nonces from uniform κ-bit strings.

1.3 Candidate Protocol

Let H denote a cryptographic hash function, and let G be a cyclic group of prime order q with
generator g. The protocol Π under consideration from the previous document is defined as follows:

� KeyGen(sk) computes x := H(sk) and outputs pk := gx.

� P(sk, nonce) first computes x := H(sk). It then chooses uniform r ∈ Zq and sets A := gr.
Finally, it computes c := H(gx, nonce, A) followed by s := c · x + r mod q. It outputs the
proof (c, s).

2



� V(pk, nonce, π), where π = (c, s), works as follows: compute A := gs/pkc; then output 1 if

and only if H(pk, nonce, A)
?
= c.

2 Security Analysis

2.1 Zero Knowledge

We first prove that the protocol Π from Section 1.3 is zero knowledge when H is modeled as a
random oracle. This means that an execution of the protocol leaks nothing about sk beyond what
is already revealed by pk. This, in turn, implies that attacker’s ability to interact with the proof
oracle does not help the attacker determine sk or impersonate the user to a service. The fact that
the protocol is zero knowledge greatly simplifies the security proof of the overall protocol.

To prove that the protocol is zero knowledge, we show how a simulator who is given the ability
to program the hash function H (as is the case when H is modeled as a random oracle) can simulate
proofs without knowing sk. The simulator—who is given pk and nonce but not sk—works as follows:

1. Choose uniform c, s ∈ Zq.

2. Set A := gs/pkc.

3. Program H(pk, nonce, A) to be equal to c. (If H(pk, nonce, A) is already defined, then this
step causes a simulation failure. We show below that this occurs with negligible probability.)

4. Output the proof (c, s).

Let Collision denote the event that A was used in a previous hash query by the attacker or in a
previously simulated proof. Since A is uniform, the probability that Collision occurs, above, is at
most (qH +qP)/q, where qH is the number of H-queries made by the attacker and qP is the number
of previously simulated proofs. By a union bound, the probability that Collision ever occurs is thus
at most qP · (qH + qP)/q.

As we now show, if Collision does not occur then a proof output by the simulator is distributed
identically to a proof generated by the real prover (who knows sk). To see this, note that when the
real prover generates a proof (c, s) and Collision does not occur, we have:

� the auxiliary value A is a uniform element of G;

� H(pk, nonce, A) = c, where c is a uniform element of Zq;

� s is uniquely determined as s = c · x+ logg A.

On the other hand, for proofs generated by the simulator we have:

� c is a uniform element of Zq and H(pk, nonce, A) = c;

� A is a uniform element of G (because s is uniform);

� s is uniquely determined as s = c · x+ logg A.

Clearly, the distributions are identical.
The fact that the protocol is zero knowledge means that in considering Definition 1 we may

ignore step 3. (We make this more formal in Section 2.3.)

3



2.2 Proof of Knowledge

We also claim that the protocol is a proof of knowledge when H is modeled as a random oracle.
Roughly speaking, this means that if an attacker is able to generate a valid proof relative to pk,
then the attacker must know logg pk.

The basic idea is as follows. (This intuition can be turned into a formal proof, as we do
in Section 2.3, using standard techniques.) Consider an adversary who queries H(pk, nonce, A),
receives in response a uniform value c, and then outputs a proof π = (c, s) for which A = gs/pkc.
We then rewind the adversary and return a second, uniform value c′ in response to its query
H(pk, nonce, A). If c′ 6= c and the attacker outputs a second proof π′ = (c′, s′) for which A =
gs

′
/pkc

′
, then we can compute logg pk as follows. Since gs/pkc = A = gs

′
/pkc

′
, we have

gs−s
′

= pkc−c
′
.

It follows that logg pk = (s− s′)/(c− c′) mod q.

2.3 Reducing Security to Guessing the Secret

Here we consider a security definition that encapsulates the core of the identification protocol.

Definition 2 Consider the following experiment involving an attacker A:

1. A secret value sk is chosen from some distribution D.

2. Compute x := H(sk) and pk := gx. Give pk to A.

3. A outputs a value x′.

A succeeds if x′ = x. Let Adv2
D(A) be the probability that A succeeds.

Note that A succeeds if it guesses x; it is not required to guess sk. This is because knowledge
of x is sufficient to impersonate the user. It is worth informally observing, however, that there are
two ways A can determine x: either by guessing sk (in which case it can compute x = H(sk) and
then verify that x is correct using pk), or by directly computing logg pk.

The results of the previous two sections allow us to relate the success probability of an adversary
attacking identification protocol Π (i.e., with respect to Definition 1) to the success probability of
an adversary guessing x (cf. Definition 2).

Theorem 1. Fix a distribution D and an adversary A1 attacking Π in the sense of Definition 1,
where H is modeled as a random oracle and A1 makes qP proof queries and qH hash queries. Then
there is an adversary A2 in the sense of Definition 2 whose expected running time is roughly3 the
same as that of A1, and for which Adv2

D(A2) ≥ Adv1
Π,D(A1)− qP · (qH + qP)/q − qP/2κ.

Proof. Fix some adversary A1 attacking identification protocol Π (in the sense of Definition 1), and
making qH queries to H and qP queries to the proof oracle. Define ε1 = Adv1

Π,D(A1).
Let Succ denote the event that A1 outputs a valid proof and nonce∗ is not one of the nonces

used in A1’s queries to the proof oracle; define ε2 = Pr[Succ]. We have ε2 ≥ ε1 − qP/2κ (assuming
nonces are chosen as described earlier).

3The exact dependence of the running time of A2 on the running time of A1 can be deduced from the proof.

4



Next consider replacing the proof oracle with the zero-knowledge simulator from Section 2.1,
and let ε3 denote the probability of Succ in this modified experiment. As long as a simulation
failure does not occur the simulation is perfect, and therefore ε3 ≥ ε2 − qP · (qH + qP)/q.

Now construct the following adversary A2 (in the sense of Definition 2) using A1 as a subroutine:

1. A2 is given pk, which it gives to A1.

2. When A1 queries the proof oracle, A2 answers the query using the zero-knowledge simulator.

3. When A1 requests a challenge nonce, A2 chooses a nonce nonce∗ as described in Section 1.2
and gives it to A1.

4. If Succ occurs then let (c, s) be the proof output by A1 and let A = gs/pkc. Then:

Continually rewind A1 to the point where it makes4 the query H(pk, nonce∗, A),
returning a uniform response each time, until A1 again outputs a valid proof π′ =
(c′, s′) for which gs

′
/pkc

′
= A and c′ 6= c. (In parallel, A2 performs an exhaustive

search for x.) Then extract x as described in Section 2.2 and output x.

One can show that the expected number of times A2 rewinds A1 is constant. Moreover, A2 will
always output x = logg pk whenever Succ occurs. Thus, the probability with which A2 correctly
computes x is exactly ε3.

The above allows us to focus our attention on Definition 2. In particular, if we can prove a
bound on the success probability of attacks in the sense of Definition 2 then we can use that to
derive a bound on the success probability of attacks in the sense of Definition 1.

3 Hardness of Guessing the Secret

As noted earlier, an attacker can succeed in the above experiment (regardless of the distribution D)
if it can guess sk or if it can solve the discrete-logarithm problem in G. We consider these two
possibilities independently.

For a distribution D over sk, define the min-entropy of D as

H∞(D) = − log maxs{Pr[sk = s]}.

The min-entropy of § serves as a measure of how easy it is to guess sk when it is chosen according
to D. In particular, there is a strategy for guessing sk in a single guess that succeeds with probability
2−H∞(D) (and this is optimal); the probability of guessing sk in qH guesses is at most qH · 2−H∞(D).
From this point of view, distributions with higher min-entropy are more secure for users in the
sense that attackers are less likely to guess a user’s secret.

For security of the identification scheme to hold, we also need to use a group in which the
discrete-logarithm problem is hard. For a fixed cyclic group G of order q with generator g, and any
algorithm A, define

Advdlog(A) = Pr[x← Zq;x′ ← A(gx) : x′ = x].

We say the discrete-logarithm problem is (t, ε)-hard (for this G and g) if for all A running in time
at most t it holds that Advdlog(A) ≤ ε.

The following theorem shows that these are the only ways to determine x:

4We can assume without loss of generality that A1 makes such a query.

5



Theorem 2. Fix a distribution D and an adversary A running in time t and making qH queries
to H, where H is modeled as a random oracle. If the discrete-logarithm problem is (t, ε)-hard for
G and g as used by Π, then Adv2

D(A) ≤ qH · 2−H∞(D) + ε.

Proof. Let δ = Adv2
D(A). This is the probability with whichA correctly outputs x in the experiment

of Definition 2.
Consider next the modified experiment in which we choose sk according to D, choose a uniform

x ∈ Zq, set pk := gx, and give pk to A. Then, for each of A’s queries to H, we simply return a
uniform value. Let δ′ denote the probability with which A outputs x here. It is not hard to see
that this modified experiment is identical to the experiment of Definition 2 unless A ever queries
sk to H, which occurs with probability at most qH · 2−H∞(D). Thus, δ′ ≥ δ − qH · 2−H∞(D).

Finally, consider the modified experiment in which we are given an element pk ∈ G that we
pass to A. Then, for each of A’s queries to H, we simply return a uniform value. The probability
that A outputs x = logg pk is exactly the same as in the previous experiment, i.e., δ′. However, by
assumption regarding the hardness of the discrete-logarithm problem, we must have δ′ ≤ ε. The
theorem follows.

6


